Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 7 de 7
Фильтр
3.
Front Immunol ; 13: 1026473, 2022.
Статья в английский | MEDLINE | ID: covidwho-2198875

Реферат

SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Nucleocapsid
4.
Nat Commun ; 13(1): 2560, 2022 05 10.
Статья в английский | MEDLINE | ID: covidwho-1830054

Реферат

Different scenarios explaining the emergence of novel variants of concern (VOC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including their evolution in scarcely monitored populations, in animals as alternative hosts, or in immunocompromised individuals. Here we report SARS-CoV-2 immune escape mutations over a period of seven months in an immunocompromised patient with prolonged viral shedding. Signs of infection, viral shedding and mutation events are periodically analyzed using RT-PCR and next-generation sequencing based on naso-pharyngeal swabs, with the results complemented by immunological diagnostics to determine humoral and T cell immune responses. Throughout the infection course, 17 non-synonymous intra-host mutations are noted, with 15 (88.2%) having been previously described as prominent immune escape mutations (S:E484K, S:D950N, S:P681H, S:N501Y, S:del(9), N:S235F and S:H655Y) in VOCs. The high frequency of these non-synonymous mutations is consistent with multiple events of convergent evolution. Thus, our results suggest that specific mutations in the SARS-CoV-2 genome may represent positions with a fitness advantage, and may serve as targets in future vaccine and therapeutics development for COVID-19.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , Immunocompromised Host , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Nat Med ; 28(3): 496-503, 2022 03.
Статья в английский | MEDLINE | ID: covidwho-1655606

Реферат

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


Тема - темы
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
6.
Transbound Emerg Dis ; 69(3): 1596-1605, 2022 May.
Статья в английский | MEDLINE | ID: covidwho-1388405

Реферат

Knowledge of the level and duration of protective immunity against SARS-CoV-2 after primary infection is of crucial importance for preventive approaches. Currently, there is a lack of evidence on the persistence of specific antibodies. We investigated the generation and maintenance of neutralizing antibodies of convalescent SARS-CoV-2-afflicted patients over a ten-month period post-primary infection using an immunofluorescence assay, a commercial chemiluminescent immunoassay and an in-house enzyme-linked neutralization assay. We present the successful application of an improved version of the plaque-reduction neutralization assay which can be analysed optometrically to simplify data interpretation. Based on the results of the enzyme-linked neutralization assay, neutralizing antibodies were maintained in 77.4% of convalescent individuals without relevant decay over ten months. Furthermore, a positive correlation between severity of infection and antibody titre was observed. In conclusion, SARS-CoV-2-afflicted individuals have been proven to be able to develop and maintain neutralizing antibodies over a period of ten months after primary infection. Findings suggest long-lasting presumably protective humoral immune responses after wild-type infection.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/veterinary , Immunity, Humoral
7.
Int J Mol Sci ; 22(5)2021 Mar 05.
Статья в английский | MEDLINE | ID: covidwho-1129735

Реферат

We observed substantial differences in predicted Major Histocompatibility Complex II (MHCII) epitope presentation of SARS-CoV-2 proteins for different populations but only minor differences in predicted MHCI epitope presentation. A comparison of this predicted epitope MHC-coverage revealed for the early phase of infection spread (till day 15 after reaching 128 observed infection cases) highly significant negative correlations with the case fatality rate. Specifically, this was observed in different populations for MHC class II presentation of the viral spike protein (p-value: 0.0733 for linear regression), the envelope protein (p-value: 0.023), and the membrane protein (p-value: 0.00053), indicating that the high case fatality rates of COVID-19 observed in some countries seem to be related with poor MHC class II presentation and hence weak adaptive immune response against these viral envelope proteins. Our results highlight the general importance of the SARS-CoV-2 structural proteins in immunological control in early infection spread looking at a global census in various countries and taking case fatality rate into account. Other factors such as health system and control measures become more important after the early spread. Our study should encourage further studies on MHCII alleles as potential risk factors in COVID-19 including assessment of local populations and specific allele distributions.


Тема - темы
COVID-19/mortality , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , SARS-CoV-2/chemistry , Viral Structural Proteins/chemistry , Adaptive Immunity , Alleles , COVID-19/immunology , COVID-19/transmission , Computational Biology/methods , Correlation of Data , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , HLA Antigens/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Mortality , SARS-CoV-2/immunology , Viral Structural Proteins/immunology
Критерии поиска